

IBPS RRB Officer Scale-I Preliminary Grand Test – IRP-180827 **HINTS & SOLUTIONS** Date Person Event **ANSWER KEY** International Malala 12t R day 1. (2) 21. (5) 41. (1) 61. (1) 15th World youth skill P day 2. (1) 22. (2) 42. (1) 62. (1) World justice day 17t Т 26th Kargil Vijay Diwas Q 3. (4) 23. (5) 43. (2) 63. (5) World hepatitis day 28th 4. (5) 24. (3) 44. (3) 64. (3) 6. (3) 7. (3) 8.(1) 5. (4) 25. (1) 45. (2) 65. (1) 9-10. (-)S (+)B=C(·) 6. (3) 26. (3) 46. (3) 66. (4) (+)Å =Ū(-) 7. (3) 27. (2) 47. (3) 67. (1) 8. (1) 28. (4) 48. (3) 68. (3) J(+) 9. (3) 10. (4) 9. (3) 29. (1) 49. (1) 69. (1) 11-15. Six persons sit between A and D and none of them sits at 10. (4) 30. (4) 50. (4) 70. (1) any end of the row. Both A and D faces same direction. 31. (3) 51. (2) 71. (1) 11. (2) Two persons sit between E and D. I sits fourth to the left of E. Only one person sit between H and I. Immediate 12. (5) 32. (4) 52. (1) 72. (3) neighbors of D face same direction as D. C sits to the 33. (3) 53. (5) 73. (2) 13. (4) immediate left of H. Two persons sit between J and G. G 14. (3) 34. (5) 54. (4) 74. (1) and B are not the immediate neighbors of A. We will 35. (4) 55. (3) 75. (5) 15. (4) have two possibilities-Case 2 Case 1 16. (4) 36. (5) 56. (2) 76. (2) 57. (1) 77. (4) 17. (5) 37. (3) 18. (3) 38. (5) 58. (2) 78. (1) 19. (5) 39. (2) 59. (4) 79. (5) Now, persons sitting at the end face opposite directions. 40. (3) 60. (3) 80. (2) 20. (2) G and B face same direction as J. F faces north. Immediate neighbors of E face opposite direction. Since, the number of person facing south is not equal to the **HINTS & SOLUTIONS** number of person facing north. This will eliminate case 2. So the final arrangement will be-I. X > U (False) II. Z > N (True) 1.(2) Α G B н р J. F F C I.K > B (True) II. $G \leq A$ (False) 2.(1) I. T > Z (False) II. $X \ge V$ (False) 3. (4) I. $K \leq V$ (True) II. E = M (True) 4. (5) II. N = R (False) I. R < S (False) 5.(4) 11. (2) 12. (5) 13. (4) 6-8. S gave presentation at last and on World hepatitis day. R 14. (3) 15. (4) gave representation on 12th. P did not give presentation 16. (4) on 17th and 26th, So P gave presentation on 15th. Only 17. (5) ELEPHANT one person gave presentation after Q. World youth skill FKFOGBMS day is not represented on 12th. BFFGKMOS Final Person Date Event World Youth skill 12th R 18. (3) day MODERN 15th Ρ 17th 26th World Youth skill Q day 19. (5) 20. (2) 28th S World hepatitis day From both I and II, G has only one brother. 21. (5) More than two persons gave presentations between the date representing international Malala day and hepatitis day. T gave presentation on the date which represents World justice day. T(-) G(-) (+)S 22.(2) From I, P > L > OFrom II. M > N > > > Hence only II is sufficient to answer the question

- From I and II both it is clear that 'Human' is coded as 23. (5) 'vo'
- 24. (3) From I, Position of V from top = 25 - 9 + 1 = 17th Thus position of J from top = 17 - 4 = 13th From II, Position of M from top = 25 -18 +1 = 8th Thus position of J from top = 8 + 5 = 13th From I, D is to the immediate right of B 25. (1)

From II, Position of D is not confirmed.

26-30. E was born in the month having least number of days. Four persons were born between C and E. . H is the youngest of them all. G was born in the month having maximum number of days. F was born immediately before G. B was born immediately after A. We will have two possibilities-1 ar.

Case 1			Case 2		
Month	11 th	18 th	Month	11 th	18 th
Feb	E	A	Feb		E
April	В	F	April	A	В
May	G	C	May	F	G
June		H	June	C	Н

Now, D is not older than B. This will eliminate case 2. So the final arrangement will be-

18th

A

F

С

H

11th

E

В

G

D

27.(2)

30.(4)

33. (3)

Month

Feb

April

May

June

26. (3) 29. (1) 31. (3) SCHEDULE

32. (4)

34. (5) She can be Sameer's niece or daughter. 35. (4)

36. (5)

38. (5) 41. (1)

⇒ y =

∴ x < y

5

40.(3) 39. (2) $1.3x^2 + 17x + 10 = 0$ $\Rightarrow 3x^2 + 15x + 2x + 10 = 0$ $\Rightarrow 3x(x+5) + 2(x+5) = 0$ $\Rightarrow (3x+2)(x+5) = 0$ $\Rightarrow x = -5, \left(-\frac{2}{3}\right)$ $II.10y^2 + 9y + 2 = 0$ $\Rightarrow 10y^2 + 5y + 4y + 2 = 0$ $\Rightarrow 5y(2y+1) + 2(2y+1) = 0$ $\Rightarrow (5y+2)(2y+1) = 0$ -2 1

37. (3) * I 2 @ Q 8

```
4x^2 = 49
42.(1)
                \therefore x = \pm \frac{7}{2}
               ||.9y^2 - 66y + 121 = 0
               9y^2
                      -33y - 33y + 121 = 0
               y = \frac{11}{2}, \frac{11}{2}
             y > x
               \mathbf{I}.\,3x^2 + 3x + 2x + 2 = 0
```

43.(2) $\Rightarrow 3x(x+1) + 2(x+1) = 0$ $\Rightarrow x = -1, \frac{-2}{3}$ II. $y^2 + 9y + 3y + 27 = 0$ $\Rightarrow y(y+9) + 3(y+9) = 0$ $\Rightarrow y = -3, -9$

```
\therefore x > y
```

 $\mathbf{I}.\,x^2 - 5x - 2x + 10 = 0$ 44. (3) $\Rightarrow x(x-5) - 2(x-5) = 0$ $\Rightarrow x = 2.5$

```
II. y^2 - 9y - 5y + 45 = 0
    \Rightarrow y(y-9) - 5(y-9) = 0
\Rightarrow y = 9,5
```

```
\therefore x \leq y
               1.6x^2 - 49x + 99 = 0
45. (2)
               Or, 6x^2 - 27x - 22x + 99 = 0
```

Or, 3x(2x-9) - 11(2x-9) = 0

```
Or, (3x - 11) (2x - 9) = 0
```

```
\therefore x = \frac{11}{3}, \frac{9}{2}
```

```
II. 5y^2 + 17y + 14 = 0
```

```
or, 5y^2 + 10y + 7y + 14 = 0
```

```
or, 5y(y+2) + 7(y+2) = 0
```

```
or, (5y+7)(y+2) = 0
```

```
\therefore y = -2, -\frac{7}{2}
```

Hence, x > y

Let the monthly salary of A be Rs x Then, Expense on Rent and food = $x \times \frac{44}{100} = \frac{44x}{100}$ Rs. Remaining salary = $x - \frac{44x}{100} = \frac{56x}{100}$ Rs. Expense on books = $\frac{56x}{100} \times \frac{1}{8} = \frac{7x}{100}$ Rs. Remaining amount = $\frac{56x}{100} - \frac{7x}{100} = \frac{49x}{100}$ Rs. Expense on Transport and entertainment = $\frac{49x}{100} \times \frac{5}{7} = \frac{35x}{100}$ Rs

```
'A' Saving = \frac{49x}{100} - \frac{35x}{100} = \frac{14x}{100} Rs.
B's monthly salary =\frac{252000}{12} = Rs 21,000
```

```
Saving of 'A' = \frac{14x}{100} = 16\frac{2}{3}\% of 21000
```

⇒ x = 25,000 Expenses on books = $25000 \times \frac{7}{100}$ = Rs. 1,750

47. (3) Atq,

46. (3)

 $\frac{80}{100}$ ×(x - 4)x = (x + 12) (x - 12) $\Rightarrow 4x^2 - 16x = 5x^2 - 720$ \Rightarrow x² + 16x - 720 = 0 $\Rightarrow x^{2} + 36x - 20x - 720 = 0$ \Rightarrow (x + 36) (x - 20) = 0 $\Rightarrow x = 20$ $- = \frac{16 \times 20}{2}$ Required time = $\frac{totat model}{number of women}$ 24 $= 13\frac{1}{2}$ days

48. (3)	Let the CP of second article be Rs 100	55. (3)	Required Average = $\frac{2,00,000 \times \frac{65}{100} + 1,50,000 \times \frac{72}{100} + 2,20,000 \times \frac{68}{100}}{100}$
	Then, CP of first article = KS 125 Total SD of both outigles = 225 \times ¹⁴⁰ = Do 215		= 1,30,000+1,08,000+1,49,600
	$\frac{1}{100} = \frac{1}{100}$		3 = 1 29 200
	SP of cheaper (2 nd) article = $100 \times \frac{1}{100} = Rs$ 125	56.(2)	Total all types of machines produced in year 1991 = 275
	SP of first article = 315 – 125 = Rs 190		Total all types of machines produced in year 1993 = 385
	Required profit percent = $\frac{1}{125} \times 100 = 52\%$		Required percent = $\frac{275}{385} \times 100 = 71\frac{3}{7}\%$
49. (1)	SI in 3 yrs = $\frac{15000 \times 8 \times 3}{100} = Rs 3600$	57. (1)	Total machines of type IV in all the years together $= 390$
	CI in 2 yrs = $P\left[\left(1+\frac{R}{100}\right)^n-1\right]$		Total machines of type I in all the years together = 450
	$\left[\left(15 \right)^2 \right]$		Required ratio $=\frac{350}{450} = 13 : 15$
	$= 15000 \left[\left(1 + \frac{1}{100} \right) - 1 \right]$	58.(2)	For year $1991 = \frac{2}{38} \times 100 = \frac{100}{19} \%$
	$= 15000 \times \frac{129}{1000} = R_{\rm s} \frac{9675}{10000}$		For year $1992 = \frac{25}{40} \times 100 = \frac{125}{2}\%$
	$\frac{1}{400} - \frac{1}{2}$		For year $1994 = \frac{30}{10} \times 100 = 50\%$
	Required amount = $\frac{-2}{2} - 3600 = Rs \frac{-2}{2} = Rs 1237.5$		For year $1995 = \frac{40}{40} \times 100 = \frac{400}{100}\%$
50. (4)	Speed of A in downstream $=\frac{54}{4.5}=12$ km/hr		Answer \rightarrow 1992
	Let speed of A in still water be 3x km/hr	59 (4)	Total machines produced in 1990 = 215
	Speed of stream = x km/hr Unstream speed of $B = \frac{27}{2} = 5 lm/lm$	55.(4)	Total machines produced in 1995 = 445
	Upstream speed of B = $\frac{1}{5.4}$ = 5 km/nr	-	Required average = $\frac{215+445}{215+445}$ = 330
	Atq, $4x = 12 \Rightarrow x = 3 \text{ km/hr}$	F BAA	Required average 2
	Speed of stream = 3 km/hr	60. (3)	Total machines produced in year 1992 and 1993
	\therefore speed of A in still water = 12 - 3 = 9 km/hr		Total machines produced in year 1991 and 1994
	Speed of B in still water = 5 + 3 = 8 km/hr		together =275+430= 705
	Required time = $\frac{21}{(9-3)} + \frac{55}{(8+3)}$		Required difference = 705 – 657 = 48
	= 3.5 + 5 = 8.5 hr	61. (1)	Quantity I:
51. (2)	Total number of Govt. employees in year 1995 and 2010 togeth	er	Let mark price = 100x Rs.
	$= 2,00,000 \times \frac{0}{100} + 1,10,000 \times \frac{10}{100}$		So, cost price = $\frac{100x \times 75}{100}$ = 75x Rs.
	= 70,000 + 44,000	1	100
	Total number of Pvt. Employees in year 2000 and 2005 togethe		Selling price = $\frac{1000 \times 85}{100}$ = 85x Rs.
	$= 1,50,000 \times \frac{28}{100} + \frac{2,20,000 \times 32}{100}$		ATQ—
	= 42,000 + 70,400		85x = 34
	= 1,12,400		$x = \frac{2}{2}$
F2 (4)	Required ratio $-\frac{1}{(1,12,400)} - \frac{1}{281}$		5
52. (1)	The number of self-employed person in year 1990 and 2000 together = $1,25,000 \times \frac{30}{2} \times \frac{2}{2} + 1,50,000 \times \frac{40}{2} \times \frac{1}{2}$		CP = 30, Rs.
	100 5 $100 2= 15,000 + 30,000$		MP = 40 Rs.
	= 45,000 The number of unemployed person in year 2005 and 2010 together	. OF 57	Total profit on selling 18 articles \rightarrow (34 – 30) × 18 = Rs 72
	$= 2,20,000 \times \frac{20}{100} \times \frac{3}{7} + 1,10,000 \times \frac{15}{100} \times \frac{7}{10}$		g Quantity II:
	= 26,400 + 11,550		52 Rs.
	= 37,950	62. (1)	Quantity I:
52 (5)	Number of govt. employees in year 2015		Let present age of Satish = a yr
55. (5)	$=\frac{50}{100}\times\left(2,00,000\times\frac{35}{100}+1,50,000\times\frac{32}{100}\right)$		So, present age of Ayush =(a + 3) yr
	= 59,000 Total number of Byt. Employees, self-employed and unemployed in year 201	5	Given ratio
	$=\frac{59,000}{205} \times 70.5 = 1,41,000$		Age of Ayush (5 year ago) $= \frac{3}{2}$
	Required average = $\frac{1,41,000}{3}$ = 47,000		Age of Satish (4 year hence) $-\frac{1}{4}$
54. (4)	Total number of Pvt. Employees and self-employed in year 2000		$\Rightarrow \frac{a+3-5}{a+3-5} = \frac{3}{4}$
	$= 1,50,000 \times \frac{28}{100} + 1,50,000 \times \frac{40}{100} \times \frac{1}{2}$		a+4 4
	= 42,000 + 30,000		$\Rightarrow 4a - 8 = 3a + 12$
	Total number of self-employed and unemployed in year 2005 and 2010 together		⇒ a= 20 years
	$= 2,20,000 \times \frac{100}{100} + 1,10,000 \times \frac{100}{100}$ = 44,000 + 16,500		Quantity II:
	= 60,500		12 years
	Required% = $\frac{72000-60500}{60500} \times 100 = \frac{2300}{121} \approx 19\%$		
			Therefore,
			Quantity II < Quantity I

